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Axisymmetric oscillations of a circular conducting elastic membrane placed between the grounded 

plates of a capacitor and subjected to the action of an alternating voltage are investigated. Approximate 

expressions are obtained in the quasistationary approximation of the equations of cktrodynamics for 

the potential of the electric field between the plates and a self-consistent integro-partial differential 

equation in the oscillations of the membrane. A solution of the. corresponding boundary-value problem 

is constructed and a qualitative analysis of the parametrically excited oscillations is carried out. The 

conditions for stability and instability of the natural oscillations of different modes are obtained in 

terms of the electromechanical parameters 

1. INITIAL ASSUMPTIONS AND FORMULATION OF THE PROBLEM 

Consider the oscillations of the electromechanical system shown schematically in Fig. 1 (the 
front or side view). The system consists of a plane capacitor, the distance between the plates 1 
(the lower plate) and 2 (the upper plate) of which is 2h. We will assume that the outer plates 
are grounded, i.e. their potential is zero. An elastic membrane is placed symmetrically between 
the plates at the same distance h from the upper and lower plates. An electric voltage is applied 
to the membrane, the potential of which with respect to the plates is U = iJ,,cosS& where U, 
and Q are constants characterizing the amplitude and frequency, respectively. 

We will make the following simplifying assumptions regarding the geometrical and electro- 
mechanical properties of the system: 

1. the membrane and the capacitor plates are circles of radius a (seen from above), where, by 
assumption, h4a, which enables us to neglect edge effects [l]; 

2. they are ideal conductors, and the permittivity of the medium in the cylindrical regions 4 
and D, is taken to be unity (to fix our ideas); 

3. the inequality &MC is satisfied, where c is the velocity of light, which enables us to 
neglect displacement currents and to confine ourselves to the quasistatic approximation to 
describe the electric field [2,3]; 

4. the membrane is assumed to be clamped (restrained) along the contour and is ideal; 
5. to simplify the calculations the displacements of the membrane are assumed to be 

axisymmetrical, i.e. they are independent of the polar angle. 
The formulation of the problem is as follows. At the initial instant of time t = 0 points of the 

membrane are given axisymmetrical displacement and velocity distributions. It is required to 
obtain the motion of the membrane when t > 0 taking the applied voltage U(r) into account. 

In order to determine the motion of the current-conducting membrane we must obtain the 
distribution of the electric-field forces acting on it. These forces can be calculated [2, 31 if we 
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= 

Fig. 1. 

know the electric-field potential y and u, in the regions DI and D,, respectively. We will now 
determine these in the required quasistatic approximation for the electric field. 

2. SOLUTION OF THE PROBLEM OF ELECTROSTATICS AND THE DETERMINATION 
OF THE FORCES ACTING ON THE MEMBRANE 

In view of assumption 3 the electric field can be described by the equations of electrostatics. 
By assumption 1 the electric field is concentrated in the cylindrical region D = III u D, between 
the capacitor plates, and hence we can neglect edge effects (see the “Rogovskii capacitor” [l I). 

We will introduce a cylindrical system of coordinates whose centre coincides with the centre 
of the undeformed membrane. The z axis is directed perpendicular to its plane (see Fig. 1). As 
was mentioned above, we will denote the unknown required electric-field potentials in the 
regions III and D, by u., and u,, where u&r, z, t). We will denote the required symmetrical 
displacement of points of the membrane by V = V(r, t). 

The potentials Q are defined as the solutions of the following Dirichlet problems [Z, 31 

AU, =O, (r,z)o4 =(r,z: 0s r<a, V>z>-hl (2.1) 

u*(r,-h,t) = 0, u,(r,V,t)=UOcodZt 

Af+ =O, (r,z)eQ ={t,z: 06 r<a, 

+(r,h,t) = 0, u2 (r, V, t) = U, cos Qt 

Here A = r-‘a(rdl&)l& + a2/az2 is the two-dimensional 
coordinates (there is no dependence on the polar angle), 

h>z>V} (2.2) 

Laplace operator in cylindrical 
the value of V=V(r, t) in the 

boundary conditions is not known, and the time t occurs as a parameter, The boundary 
conditions for r = a are unimportant in view of assumption 1. Moreover, the solution u(r, z, t) 
must be bounded as r+O: Iukll4~~. 

Assuming the displacements of the membrane V to be fairly small, i.e. V/la*1 (and all the 
more V/a4), we seek solutions of problems (2.1) and (2.2) in the form of expansions in 
powers of V. The use of standard procedures of the method of perturbations becomes more 
convenient if we make the replacement V + EV, where E is a numerical parameter, and after 
carrying out formal expansions in powers of e we put e = 1. For further analysis of the main 
qualitative properties of the motion of the system it turns out to be sufficient to confine 
ourselves to the first approximation u =y,* = 4: +EU$ +E* . . . (E = 1). The unknown 
coefficients u(O), u(l), . . . are obtained by successive solution of the corresponding boundary- 
value problems. To determine the unknown 4: we have, by (2.1) and (2.2) in the regions -1)T, 
the problems 

Auf? =0, @(r,ih,t)=O 

qy = 4.2b=o 9 uI(p2) (r, 0, t) = UO cos Sk 
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which do not contain the unknown V in the boundary conditions. Taking into account the 
condition for the solution u(O) to be bounded as r 40, we obtain the expressions 

I&) = U&l f ~-l)cos~~ (2.3) 

which are independent of the Y coordinate. These correspond to the case of an undeformed 
membrane. 

To determine the unknown functions r~.$ in the corresponding ~deformed regions D$ we 
require solutions of the boundary-value problems conta~i~ the ~known function V = V(r, r) 

Au{02 =0, ul(:)(r,Th,t)=O, , , , u$(r 0 t) = TVh”U, cosRt 

Here the functions u$ must be bounded as r + 0. Since when h/a 41 we can neglect edge 
effects at the boundary r = a [l], we can formulate arbitrary boundary conditions for z& Since 
the membrane is rigidly clamped along the edge ~{~ t) = O), in the case co~idered it is also 
convenient to put zP(a, 2, t) = 0. 

We will assume for the present that the function V(r, t> is known and is fairly smooth. Then 
the required functions &r, z, r) are defined uniquely in the form of series 

R,(r)=J,(y,ru-‘), n-l,2 ,... 

y,~(n-Y4)n:~o,osn(4n-l)-’ +O(r?), yn+,=yn+X+O(n-*) 

Here 1, is a Bessel function of zero order, and the eigenvalues of the problem y, are the 
roots of the equation J,(y) = 0 {yl = 2.4048, y2 = 5.5201, y3 = 8.6537, y4 = 11.7915, ys = 14.9309, 
etc. [4]). The coefficients c, of the series in (2.4) are Fourier coefficients of the function V(r, I’) 
in an orthogonal system (Rm(r)) with weight r 

’ c, =c,(t)=- i V(P, ~)R,(P)P~J 
ilR,11* o 

a2 
~~R.~~*=~~~(Y~~)P~P=~J:(Y.) 

(24 

As a result, we obtain approximate expressions, apart from quadratic terms in IIVII for the 
required potentials Q Taking (2.3) and (2.4) into account we conclude that they have the 
following form in regions Q and Q, respectively 

uo ~COSc22 5 c,(t) 
shy,(hfz)a-’ 

St=1 WY,@-‘) 

(rr 2) E 42 

where c,,(t) are linear functionals of V (2.5). 

(2.6) 

To determine the surface forces acting on the conducting membrane we must calculate the 
electric field strength Ets in the regions Qs respectively from the formulae EIJ = -grady,z. 
The d~tribution of the forces, i.e. the normal pressure, is defined as follows [2,3]: r 

p=Ez-E,2 
8n I ui cos2 ar 2 c,(t)y, cth 

r=V = 47d2 
y h 

li=l 
( .--‘Jo(Y.;) (2.71 
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In deriving (2.7) we only took into account terms that are linear in V and the fact that the 
representations (2.6) in this approximation hold in the initial regions Q2. It follows from (2.7) 
that when V = 0 the normal pressure P = 0, since c,(r) = 0, n = 1, 2, . . . . Note that this is due to 
the symmetrical position of the membrane (at equal distances h from the plates). 

3. THE CONSTRUCTION AND SOLUTION OF THE BOUNDARY-VALUE PROBLEM 
DESCRIBING THE AXISYMMETRICAL MOTIONS OF THE MEMBRANE 

Using expression (2.7) for the distributed forces P which are orthogonal to the surface we 
can write the following equation of motion of the membrane [SJ 

pV” - TAV=P, V=V(r,t), reu (3.1) 

P = P(r,c,[V]) = u$;;2Qf a Gt r, p)V(p, WP 

W.P) = ,., rn cth 11RJ2 R,(r)R,(p)p 

The dots denote differentiation with respect to time t, A=r-‘a(r8/&)/& is the one- 
dimensional Laplace operator with respect to r, p is the surface density, and T is the tension of 
the membrane. There is no dependence on the polar angle in view of assumption 5 in Section 
1. Note that the state of the membrane is described by the integro-partial differential equation 
(3.1). The right-hand side of the equation contains a Fredholm-type operator, integral with 
respect to r. 

It is required to obtain a solution of Eq. (3.1) satisfying the clamping and boundedness 
conditions 

V(a, t) = 0, IV(r, d)l d M < -, r + 0 (3.2) 

and also the specified axisymmetrical initial conditions 

V(r, 0) =flr), w, 0) = g(r) (3.3) 

The functions fand g are assumed to be consistent with conditions (3.2) and fairly smooth, 
so that a strong solution [5] of problem (3.1)-(3.3) exists. 

It is natural to seek this solution in the form of expansions in the system of functions 
Z?,(r) = Jo(ynru-l), orthogonal with weight I 

v=Vtr,t)=ni, V,(t)R,(r) 
= (3.4) 

Using standard methods of mathematical physics [S] we obtain the following second-order 
ordinary differential equations with periodic Mathieu-type coefficients [6] for the coefficients 
v,(t) (3.4) 

v; + (02 -v,2cosZnz)v, =o, n=1,2,... (3.5) 

of = y;T(p’)-‘, v,2 = iY,2(4tiZu)-1yn Cth(~,W’) 

Here CO,, are the natural frequencies of a circular membrane undergoing axisymmetrical 
oscillations. The parameters v, also have the dimensions of frequency, where v, - J(‘r,) - 
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d(n). Hence vi 0;’ _ n-’ as n -+ 00, i.e. the terms o:V, are the “principal” terms in Eq. (3.5) for 
Sufficiently large n. The functions V, must satisfy the initial conditions, which follow from (3.3) 

V,(O)=&, f, =(f(r)rR,(r)),w1-2 (3.6) 

Vi(O) = g,, g” = (g(~),~(r)),ll%ll-2 

It is assumed that the coefficients fn and g, decrease fairly rapidly as n + =. 
Hence, the boundary-value problem (3.1)-(3.3) reduces to the solution of a denumerable 

system of Cauchy problems (3.5) and (3.6) for linear equations with periodic coefficients, the 
frequency of variation of which is 2!A. Note that the effect of the external electric field is 
determined by the square of the voltage Uz = Vi cos*m. If U,, = 0 we have v, = 0 and the 
equations can be integrated in explicit form. The solution obtained describes the free 
axisymmetrical oscillations of a circular membrane. When U, # 0, R + 0 the required solution 
V,(r), n = 1, 2, . . . can be written using Mathieu functions [6]. The case when Q = 0 a constant 

voltage) is also of interest (see below). 

4. A QUALITATIVE ANALYSIS OF THE MOTION OF THE MEMBRANE 

4.1. The stability of the position of equilibrium and of the motions of the membrane in a 
constant electric field 

In Eqs (3.5) we put S2 = 0; we obtain the denumerable system 

K+(oi -vi)V, =o, n=1,2,... (4.1) 

The stability, in the linear approximation, of the oscillations of the membrane and of its 
position of equilibrium V, = 0, V,’ = 0 follows from (4.1) if o, > v, for all n 3 1. In the initial 
physical variables the condition w, > v, can be written as follows: 

(UO / h)2 < 4lcTa-‘y, th(y,ha-‘), n = I,2 ,... (4.2) 

Thus, stability in the linear approximation occurs if the electric field strength U,, / h averaged 
over z) is sufficiently small compared with the parameter (T/a)“’ characterizing the tension of 
the membrane. Owing to the monotonicity of the right-hand side of inequality (4.2) with res- 
pect of 7, it is sufficient for this to be satisfied when n = 1, i.e. for yl. Since we have the strong 
inequality ha-%, condition (4.2) takes the following form when n = 1 

(U,, / h)2 < 41cyF(h / a)Ta-’ (7:s 5.7831) (4.3) 

The oscillations of the membrane lose their stability and become exponentially unstable if 
inequalities inverse to (4.2) are satisfied for certain values of n = 1,2, . , . , n * In particular, the 
loss of stability with respect to the fundamental first mode occurs when the inverse inequality 
to (4.3) is satisfied 

(4.4) 

Inequality (4.4) is similar in its form and physical meaning to the condition for a charged 
liquid drop which is in equilibrium under the action of surface-tension forces to be unstable 
(Rayleigh, see [7]). 

The presence of linear dissipation means that modes of oscillation that are stable in the 
linear approximation become asymptotically (exponentially) stable. Exponentially stable 
modes remain such. Critical cases, when instead of strict inequalities we have equalities, 
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require additional investigations taking the non-linearity into account. Note that the presence 
of a constant electric field leads to a reduction in the frequency of oscillations of the membrane 
by (4.1). 

4.2. Instability of the parametric oscillations of a membrane in an alternating electric field 
We will reduce Eqs (3.5) to the standard form of Mathieu equations [6]. To do this we will 

introduce dimensionless time z and dimensionless parameters a,,, p,, by the following 
formulae 

z=ar, a, = o;n-2(1- j.$ v;&), 28, = j$ v$” 

(a,~o~~-2[1-U~a2(81th3~~)-‘l, 2/3,5(1~(8~~1h~Q~)-‘, ~,ha-‘~ 1) 

(4.5) 

Equations (3.5) can be reduced to the form of a Mathieu equation [6] (the dots again denote 
differentiation with respect to the argument r) 

V;+(a,-2~,cos2z)Vn=0, n=l,2,... (4.6) 

It is natural to assume further that p,, *ia,. As follows from (4.5) this assumption holds for 
sufficiently large n since a, -n2, pn -n as II + 00. This enabies us to use the methods of 
perturbation theory and to obtain the conditions for which a loss of stability of the zeroth (or 
any) solution of Eqs (4.6) occurs. In a small neighbourhood of the resonance values of the 
parameters a, corresponding to the fundamental or higher resonance zones, the conditions 
for exponential instability in the plane of the parameters a, have the form of two-sided 
inequalities [6]. We will write these conditions for the first four resonance zones of the 
parametric oscillations of a membrane of an arbitrary mode with number n , n = 1,2, . . . , By [6] 
we have 

4--Lg:+~p:<a,<4+~$:-16?_81 
12 13824 13824 

9+-$-J&l;<a,<9+ &I% +&P: 

16+&i -&fi: <a, <16+&l: 433 
+-ptt 

864000 

(4.7) 

The left-hand and right-hand sides of inequalities (4.7) are power series of p,, in which we 
have retained terms no higher than the fourth power. These inequalities define the resonance 
zones of excitation of parametric oscillations. Note that their width is of the order of p(k), 
where k is the number of the zone, i.e. it becomes extremely narrow when k%-1, /3,, < 1. 

Specifying the boundaries of the regions of instability in the neighbourhood of different 
resonance zones in the form of the two-sided inequalities (4.7) may not be convenient for large 
n*l, since p, -_) 00 as n +m. Hence, instead of on (4.5) it is preferable to introduce the 
parameters 5. so that Eqs (4.6) take the form 

Substituting p, into (4.7) and solving the inequalities for a, successively in powers of the 
small quantity {,,, we obtain the conditions for instability that are equivalent to those indicated 
and that are more convenient for use when nal, since 5, - n-’ + 0 as n -_) m. 
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Consider the main resonance zone k = 1 (the first two-sided inequality of (4.7)). In this range 
of values of the parameters, having a width 2p,,, an exponential increase in the amplitude of 
the oscillations of the IZ th mode occurs. The frequency of the oscillations is close to the 
frequency CJ of alternation of the electric field; the difference is a quantity of the order of p,, 
(4.5). The growth increment of the amplitude is equal to 1128, [6]. 

Resonance zones of higher orders k 3 2 can be investigated in the same way. In these zones 
an exponential increase in the amplitude of the oscillations with a frequency close to (kn) 
occurs. The width of the resonance zone (as pointed out above), the difference in the 
frequency and the growth increment of the amplitude are quantities of the order of pi. In 
practice [S], parametric excitation of oscillations in the fundamental resonance zone k = 1 (4.7) 
occurs most easily for the lower modes of oscillation n = 1, 2, . . . , n* where n* “is not very 
large”. 

If the natural frequency of a fixed mode n* satisfies one of the conditions (4.7), but none of 
the remaining modes n f n * satisfy any of the above two-sided inequalities, only this mode n* 
will be excited. Otherwise several modes of oscillations may be excited in different resonance 
zones. 

Satisfaction of the conditions of instability (4.7) of the parametric oscillations (4.6) leads to 
an exponential unlimited increase in the amplitude of the oscillations as t 4 fm [6]. This can 
be explained by the incomplete linear model of the oscillations of the membrane. If there is a 
non-linearity and dissipation in the system, the stationary oscillations of limited amplitude may 
set in. Sources of non-linearity can be the following. 

1. Higher powers of E (i.e. of the variable V) are taken into account in the expressions for the 
potentials Q see Section 2), i.e. the geometrical non-linearity is taken into account when 
calculating the ponderomotive forces of the electric field. 

2. The presence of a non-linear relationship between the tension T of the membrane and the 
displacement (physical non-linearity of the material). 

3. The geometrical non-linearity is taken into account when calculating the elastic forces 
which return the elements of the membrane to the position of equilibrium (the extensibility of 
the material is taken into account). 

The effect of one or several types of the above (and possibly other) non-linearities leads to a 
limitation on the amplitude of parametrically excited oscillations, and also leads to the 
possibility of the existence of periodic stationary oscillations. Note that the presence of 
considerable dissipation may lead to stable stationary oscillations in a resonance zone both in 
the non-linear and linear approaches. 

4.3. Conclusions 
Using the results obtained in Section 4.1 we have established the possibility of a loss of 

stability of the position of equilibrium of a membrane in a constant electric field. It is 
technically possible to carry out laboratory experiments to determine the shift in the natural 
frequencies of the oscillations of the membrane in a constant electric field, and also to observe 
the loss of stability of the equilibrium state V = 0. 

Parametric excitation of the oscillations of a membrane placed between grounded plates of a 
capacitor and subjected to the action of an alternating electric field is possible in principle. The 
excitation of the first mode in the fundamental resonance zone by an appropriate choice of the 
parameters of the system, such as a, h, U,, a, T, p (see Section 4.2) is technically the simplest. 

Note that the problem of the parametric oscillations of an elastic membrane in an alternating 
electric field considered above is in a certain sense the dual problem of the mechanical 
excitation of an electric current considered in [9], where it was shown that it is possible to 
excite electric oscillations in a circuit by a periodic variation of the capacitance. 

This work was carried out with financial support from the Russian Fund for Fundamental 
Research (93-013-17594). 
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